Dynamic proteomic analysis reveals a switch between central carbon metabolism and alcoholic fermentation in rice filling grains.
نویسندگان
چکیده
Accumulation of reserve materials in filling grains involves the coordination of different metabolic and cellular processes, and understanding the molecular mechanisms underlying the interconnections remains a major challenge for proteomics. Rice (Oryza sativa) is an excellent model for studying grain filling because of its importance as a staple food and the available genome sequence database. Our observations showed that embryo differentiation and endosperm cellularization in developing rice seeds were completed approximately 6 d after flowering (DAF); thereafter, the immature seeds mainly underwent cell enlargement and reached the size of mature seeds at 12 DAF. Grain filling began at 6 DAF and lasted until 20 DAF. Dynamic proteomic analyses revealed 396 protein spots differentially expressed throughout eight sequential developmental stages from 6 to 20 DAF and determined 345 identities. These proteins were involved in different cellular and metabolic processes with a prominently functional skew toward metabolism (45%) and protein synthesis/destination (20%). Expression analyses of protein groups associated with different functional categories/subcategories showed that substantially up-regulated proteins were involved in starch synthesis and alcoholic fermentation, whereas the down-regulated proteins in the process were involved in central carbon metabolism and most of the other functional categories/subcategories such as cell growth/division, protein synthesis, proteolysis, and signal transduction. The coordinated changes were consistent with the transition from cell growth and differentiation to starch synthesis and clearly indicated that a switch from central carbon metabolism to alcoholic fermentation may be important for starch synthesis and accumulation in the developmental process.
منابع مشابه
The relationships between carbon isotope discrimination and photosynthesis and rice yield under shading
The measurement of carbon isotope discrimination (∆) provides an integrated insight into theresponse of plants to environmental change. To investigate the potential use of ∆ for identifyingshade tolerance in rice, five rice varieties were selected and artificially shaded (53% lightreduction) during the grain-filling period in 2010 and 2011, in Sichuan, China. Shadingtreatment had a significant ...
متن کاملComparative proteomic study reveals dynamic proteome changes between superhybrid rice LYP9 and its parents at different developmental stages.
Heterosis is a common phenomenon in which the hybrids exhibit superior agronomic performance than either inbred parental lines. Although hybrid rice is one of the most successful apotheoses in crops utilizing heterosis, the molecular mechanisms underlying rice heterosis remain elusive. To gain a better understanding of the molecular mechanisms of rice heterosis, comparative leaf proteomic analy...
متن کاملA Proteomic Study on Molecular Mechanism of Poor Grain-Filling of Rice (Oryza sativa L.) Inferior Spikelets
Cultivars of rice (Oryza sativa L.), especially of the type with large spikelets, often fail to reach the yield potential as expected due to the poor grain-filling on the later flowering inferior spikelets (in contrast to the earlier-flowering superior spikelets). The present study showed that the size and grain weight of superior spikelets (SS) was greater than those of inferior spikelets (IS)...
متن کاملDynamic Analysis of Gene Expression in Rice Superior and Inferior Grains by RNA-Seq
Poor grain filling of inferior grains located on lower secondary panicle branch causes great drop in rice yield and quality. Dynamic gene expression patterns between superior and inferior grains were examined from the view of the whole transcriptome by using RNA-Seq method. In total, 19,442 genes were detected during rice grain development. Genes involved in starch synthesis, grain storage and ...
متن کاملIntegrated proteomic and cytological study of rice endosperms at the storage phase.
The endosperm at the storage phase undergoes a series of coordinated cellular and metabolic events, including starchy endosperm cell death, starch synthesis, and starch granule packaging, which leads to efficient accumulation of starch. However, the mechanism underlying the interconnections remains unknown. We used integrated proteomic and cytological approaches to probe the interconnections in...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Plant physiology
دوره 148 2 شماره
صفحات -
تاریخ انتشار 2008